PHP  
 PHP: Test and Code Coverage Analysis
downloads | QA | documentation | faq | getting help | mailing lists | reporting bugs | php.net sites | links | my php.net 
 

LCOV - code coverage report
Current view: top level - ext/standard - crypt_sha256.c (source / functions) Hit Total Coverage
Test: PHP Code Coverage Lines: 212 236 89.8 %
Date: 2014-04-16 Functions: 7 8 87.5 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* SHA256-based Unix crypt implementation.
       2             :    Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.  */
       3             : /* Windows VC++ port by Pierre Joye <pierre@php.net> */
       4             : 
       5             : #include "php.h"
       6             : #include "php_main.h"
       7             : 
       8             : #include <errno.h>
       9             : #include <limits.h>
      10             : 
      11             : #ifdef PHP_WIN32
      12             : # define __alignof__ __alignof
      13             : # define alloca _alloca
      14             : #else
      15             : # ifndef HAVE_ALIGNOF
      16             : #  include <stddef.h>
      17             : #  define __alignof__(type) offsetof (struct { char c; type member;}, member)
      18             : # endif
      19             : # if HAVE_ATTRIBUTE_ALIGNED
      20             : #  define ALIGNED(size) __attribute__ ((__aligned__ (size)))
      21             : # else
      22             : #  define ALIGNED(size)
      23             : # endif
      24             : #endif
      25             : 
      26             : #include <stdio.h>
      27             : #include <stdlib.h>
      28             : 
      29             : #ifdef PHP_WIN32
      30             : # include <string.h>
      31             : #else
      32             : # include <sys/param.h>
      33             : # include <sys/types.h>
      34             : # if HAVE_STRING_H
      35             : #  include <string.h>
      36             : # else
      37             : #  include <strings.h>
      38             : # endif
      39             : #endif
      40             : 
      41          42 : char * __php_stpncpy(char *dst, const char *src, size_t len)
      42             : {
      43          42 :         size_t n = strlen(src);
      44          42 :         if (n > len) {
      45           3 :                 n = len;
      46             :         }
      47          42 :         return strncpy(dst, src, len) + n;
      48             : }
      49             : 
      50           5 : void * __php_mempcpy(void * dst, const void * src, size_t len)
      51             : {
      52           5 :         return (((char *)memcpy(dst, src, len)) + len);
      53             : }
      54             : 
      55             : #ifndef MIN
      56             : # define MIN(a, b) (((a) < (b)) ? (a) : (b))
      57             : #endif
      58             : #ifndef MAX
      59             : # define MAX(a, b) (((a) > (b)) ? (a) : (b))
      60             : #endif
      61             : 
      62             : /* Structure to save state of computation between the single steps.  */
      63             : struct sha256_ctx {
      64             :         uint32_t H[8];
      65             : 
      66             :         uint32_t total[2];
      67             :         uint32_t buflen;
      68             :         char buffer[128]; /* NB: always correctly aligned for uint32_t.  */
      69             : };
      70             : 
      71             : #if PHP_WIN32 || (!defined(WORDS_BIGENDIAN))
      72             : # define SWAP(n) \
      73             :     (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
      74             : #else
      75             : # define SWAP(n) (n)
      76             : #endif
      77             : 
      78             : /* This array contains the bytes used to pad the buffer to the next
      79             :    64-byte boundary.  (FIPS 180-2:5.1.1)  */
      80             : static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
      81             : 
      82             : 
      83             : /* Constants for SHA256 from FIPS 180-2:4.2.2.  */
      84             : static const uint32_t K[64] = {
      85             :         0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
      86             :         0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
      87             :         0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
      88             :         0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
      89             :         0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
      90             :         0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
      91             :         0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
      92             :         0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
      93             :         0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
      94             :         0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
      95             :         0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
      96             :         0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
      97             :         0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
      98             :         0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
      99             :         0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
     100             :         0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
     101             : };
     102             : 
     103             : 
     104             : /* Process LEN bytes of BUFFER, accumulating context into CTX.
     105             :    It is assumed that LEN % 64 == 0.  */
     106      492533 : static void sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx) {
     107      492533 :         const uint32_t *words = buffer;
     108      492533 :         size_t nwords = len / sizeof (uint32_t);
     109             :         unsigned int t;
     110             : 
     111      492533 :         uint32_t a = ctx->H[0];
     112      492533 :         uint32_t b = ctx->H[1];
     113      492533 :         uint32_t c = ctx->H[2];
     114      492533 :         uint32_t d = ctx->H[3];
     115      492533 :         uint32_t e = ctx->H[4];
     116      492533 :         uint32_t f = ctx->H[5];
     117      492533 :         uint32_t g = ctx->H[6];
     118      492533 :         uint32_t h = ctx->H[7];
     119             : 
     120             :         /* First increment the byte count.  FIPS 180-2 specifies the possible
     121             :          length of the file up to 2^64 bits.  Here we only compute the
     122             :          number of bytes.  Do a double word increment.  */
     123      492533 :         ctx->total[0] += len;
     124      492533 :         if (ctx->total[0] < len) {
     125           0 :                 ++ctx->total[1];
     126             :         }
     127             : 
     128             :         /* Process all bytes in the buffer with 64 bytes in each round of
     129             :          the loop.  */
     130     1534376 :         while (nwords > 0) {
     131             :                 uint32_t W[64];
     132      549310 :                 uint32_t a_save = a;
     133      549310 :                 uint32_t b_save = b;
     134      549310 :                 uint32_t c_save = c;
     135      549310 :                 uint32_t d_save = d;
     136      549310 :                 uint32_t e_save = e;
     137      549310 :                 uint32_t f_save = f;
     138      549310 :                 uint32_t g_save = g;
     139      549310 :                 uint32_t h_save = h;
     140             : 
     141             :         /* Operators defined in FIPS 180-2:4.1.2.  */
     142             : #define Ch(x, y, z) ((x & y) ^ (~x & z))
     143             : #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
     144             : #define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
     145             : #define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
     146             : #define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
     147             : #define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
     148             : 
     149             :         /* It is unfortunate that C does not provide an operator for
     150             :         cyclic rotation.  Hope the C compiler is smart enough.  */
     151             : #define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
     152             : 
     153             :                 /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */
     154     9338270 :                 for (t = 0; t < 16; ++t) {
     155     8788960 :                         W[t] = SWAP (*words);
     156     8788960 :                         ++words;
     157             :                 }
     158    26916190 :                 for (t = 16; t < 64; ++t)
     159    26366880 :                         W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
     160             : 
     161             :                 /* The actual computation according to FIPS 180-2:6.2.2 step 3.  */
     162    35705150 :                 for (t = 0; t < 64; ++t) {
     163    35155840 :                         uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
     164    35155840 :                         uint32_t T2 = S0 (a) + Maj (a, b, c);
     165    35155840 :                         h = g;
     166    35155840 :                         g = f;
     167    35155840 :                         f = e;
     168    35155840 :                         e = d + T1;
     169    35155840 :                         d = c;
     170    35155840 :                         c = b;
     171    35155840 :                         b = a;
     172    35155840 :                         a = T1 + T2;
     173             :                 }
     174             : 
     175             :                 /* Add the starting values of the context according to FIPS 180-2:6.2.2
     176             :                 step 4.  */
     177      549310 :                 a += a_save;
     178      549310 :                 b += b_save;
     179      549310 :                 c += c_save;
     180      549310 :                 d += d_save;
     181      549310 :                 e += e_save;
     182      549310 :                 f += f_save;
     183      549310 :                 g += g_save;
     184      549310 :                 h += h_save;
     185             : 
     186             :                 /* Prepare for the next round.  */
     187      549310 :                 nwords -= 16;
     188             :         }
     189             : 
     190             :         /* Put checksum in context given as argument.  */
     191      492533 :         ctx->H[0] = a;
     192      492533 :         ctx->H[1] = b;
     193      492533 :         ctx->H[2] = c;
     194      492533 :         ctx->H[3] = d;
     195      492533 :         ctx->H[4] = e;
     196      492533 :         ctx->H[5] = f;
     197      492533 :         ctx->H[6] = g;
     198      492533 :         ctx->H[7] = h;
     199      492533 : }
     200             : 
     201             : 
     202             : /* Initialize structure containing state of computation.
     203             :    (FIPS 180-2:5.3.2)  */
     204      253693 : static void sha256_init_ctx(struct sha256_ctx *ctx) {
     205      253693 :         ctx->H[0] = 0x6a09e667;
     206      253693 :         ctx->H[1] = 0xbb67ae85;
     207      253693 :         ctx->H[2] = 0x3c6ef372;
     208      253693 :         ctx->H[3] = 0xa54ff53a;
     209      253693 :         ctx->H[4] = 0x510e527f;
     210      253693 :         ctx->H[5] = 0x9b05688c;
     211      253693 :         ctx->H[6] = 0x1f83d9ab;
     212      253693 :         ctx->H[7] = 0x5be0cd19;
     213             : 
     214      253693 :         ctx->total[0] = ctx->total[1] = 0;
     215      253693 :         ctx->buflen = 0;
     216      253693 : }
     217             : 
     218             : 
     219             : /* Process the remaining bytes in the internal buffer and the usual
     220             :    prolog according to the standard and write the result to RESBUF.
     221             : 
     222             :    IMPORTANT: On some systems it is required that RESBUF is correctly
     223             :    aligned for a 32 bits value.  */
     224      253693 : static void * sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) {
     225             :         /* Take yet unprocessed bytes into account.  */
     226      253693 :         uint32_t bytes = ctx->buflen;
     227             :         size_t pad;
     228             :         unsigned int i;
     229             : 
     230             :         /* Now count remaining bytes.  */
     231      253693 :         ctx->total[0] += bytes;
     232      253693 :         if (ctx->total[0] < bytes) {
     233           0 :                 ++ctx->total[1];
     234             :         }
     235             : 
     236      253693 :         pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
     237      253693 :         memcpy(&ctx->buffer[bytes], fillbuf, pad);
     238             : 
     239             :         /* Put the 64-bit file length in *bits* at the end of the buffer.  */
     240      253693 :         *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);
     241      253693 :         *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
     242             :                                                   (ctx->total[0] >> 29));
     243             : 
     244             :         /* Process last bytes.  */
     245      253693 :         sha256_process_block(ctx->buffer, bytes + pad + 8, ctx);
     246             : 
     247             :         /* Put result from CTX in first 32 bytes following RESBUF.  */
     248     2283237 :         for (i = 0; i < 8; ++i) {
     249     2029544 :                 ((uint32_t *) resbuf)[i] = SWAP(ctx->H[i]);
     250             :         }
     251             : 
     252      253693 :         return resbuf;
     253             : }
     254             : 
     255             : 
     256      895904 : static void sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx) {
     257             :         /* When we already have some bits in our internal buffer concatenate
     258             :          both inputs first.  */
     259      895904 :         if (ctx->buflen != 0) {
     260      642053 :                 size_t left_over = ctx->buflen;
     261      642053 :                 size_t add = 128 - left_over > len ? len : 128 - left_over;
     262             : 
     263      642053 :                   memcpy(&ctx->buffer[left_over], buffer, add);
     264      642053 :                   ctx->buflen += add;
     265             : 
     266      642053 :                 if (ctx->buflen > 64) {
     267      238132 :                         sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
     268      238132 :                         ctx->buflen &= 63;
     269             :                         /* The regions in the following copy operation cannot overlap.  */
     270      238132 :                         memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], ctx->buflen);
     271             :                 }
     272             : 
     273      642053 :                 buffer = (const char *) buffer + add;
     274      642053 :                 len -= add;
     275             :         }
     276             : 
     277             :         /* Process available complete blocks.  */
     278      895904 :         if (len >= 64) {
     279             : /* To check alignment gcc has an appropriate operator.  Other
     280             : compilers don't.  */
     281             : #if __GNUC__ >= 2
     282             : # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
     283             : #else
     284             : # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
     285             : #endif
     286         708 :                 if (UNALIGNED_P (buffer))
     287           0 :                         while (len > 64) {
     288           0 :                                 sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx);
     289           0 :                                 buffer = (const char *) buffer + 64;
     290           0 :                                 len -= 64;
     291             :                         } else {
     292         708 :                                 sha256_process_block(buffer, len & ~63, ctx);
     293         708 :                                 buffer = (const char *) buffer + (len & ~63);
     294         708 :                                 len &= 63;
     295             :                         }
     296             :         }
     297             : 
     298             :         /* Move remaining bytes into internal buffer.  */
     299      895904 :         if (len > 0) {
     300      254375 :                 size_t left_over = ctx->buflen;
     301             : 
     302      254375 :                 memcpy(&ctx->buffer[left_over], buffer, len);
     303      254375 :                 left_over += len;
     304      254375 :                 if (left_over >= 64) {
     305           0 :                         sha256_process_block(ctx->buffer, 64, ctx);
     306           0 :                         left_over -= 64;
     307           0 :                         memcpy(ctx->buffer, &ctx->buffer[64], left_over);
     308             :                 }
     309      254375 :                 ctx->buflen = left_over;
     310             :         }
     311      895904 : }
     312             : 
     313             : 
     314             : /* Define our magic string to mark salt for SHA256 "encryption"
     315             :    replacement.  */
     316             : static const char sha256_salt_prefix[] = "$5$";
     317             : 
     318             : /* Prefix for optional rounds specification.  */
     319             : static const char sha256_rounds_prefix[] = "rounds=";
     320             : 
     321             : /* Maximum salt string length.  */
     322             : #define SALT_LEN_MAX 16
     323             : /* Default number of rounds if not explicitly specified.  */
     324             : #define ROUNDS_DEFAULT 5000
     325             : /* Minimum number of rounds.  */
     326             : #define ROUNDS_MIN 1000
     327             : /* Maximum number of rounds.  */
     328             : #define ROUNDS_MAX 999999999
     329             : 
     330             : /* Table with characters for base64 transformation.  */
     331             : static const char b64t[64] =
     332             : "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
     333             : 
     334          12 : char * php_sha256_crypt_r(const char *key, const char *salt, char *buffer, int buflen)
     335             : {
     336             : #ifdef PHP_WIN32
     337             : # if _MSC <= 1300
     338             : #  pragma pack(push, 16)
     339             :         unsigned char alt_result[32];
     340             :         unsigned char temp_result[32];
     341             : #  pragma pack(pop)
     342             : # else
     343             :         __declspec(align(32)) unsigned char alt_result[32];
     344             :         __declspec(align(32)) unsigned char temp_result[32];
     345             : # endif
     346             : #else
     347             :         unsigned char alt_result[32] ALIGNED(__alignof__ (uint32_t));
     348             :         unsigned char temp_result[32] ALIGNED(__alignof__ (uint32_t));
     349             : #endif
     350             : 
     351             :         struct sha256_ctx ctx;
     352             :         struct sha256_ctx alt_ctx;
     353             :         size_t salt_len;
     354             :         size_t key_len;
     355             :         size_t cnt;
     356             :         char *cp;
     357          12 :         char *copied_key = NULL;
     358          12 :         char *copied_salt = NULL;
     359             :         char *p_bytes;
     360             :         char *s_bytes;
     361             :         /* Default number of rounds.  */
     362          12 :         size_t rounds = ROUNDS_DEFAULT;
     363          12 :         zend_bool rounds_custom = 0;
     364             : 
     365             :         /* Find beginning of salt string.  The prefix should normally always
     366             :         be present.  Just in case it is not.  */
     367          12 :         if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) {
     368             :                 /* Skip salt prefix.  */
     369          12 :                 salt += sizeof(sha256_salt_prefix) - 1;
     370             :         }
     371             : 
     372          12 :         if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) == 0) {
     373           7 :                 const char *num = salt + sizeof(sha256_rounds_prefix) - 1;
     374             :                 char *endp;
     375           7 :                 unsigned long int srounds = strtoul(num, &endp, 10);
     376           7 :                 if (*endp == '$') {
     377           7 :                         salt = endp + 1;
     378           7 :                         rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
     379           7 :                         rounds_custom = 1;
     380             :                 }
     381             :         }
     382             : 
     383          12 :         salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
     384          12 :         key_len = strlen(key);
     385             : 
     386          12 :         if ((key - (char *) 0) % __alignof__ (uint32_t) != 0) {
     387           0 :                 char *tmp = (char *) alloca(key_len + __alignof__(uint32_t));
     388           0 :                 key = copied_key = memcpy(tmp + __alignof__(uint32_t) - (tmp - (char *) 0) % __alignof__(uint32_t), key, key_len);
     389             :         }
     390             : 
     391          12 :         if ((salt - (char *) 0) % __alignof__(uint32_t) != 0) {
     392           9 :                 char *tmp = (char *) alloca(salt_len + 1 + __alignof__(uint32_t));
     393           9 :                 salt = copied_salt =
     394           9 :                 memcpy(tmp + __alignof__(uint32_t) - (tmp - (char *) 0) % __alignof__ (uint32_t), salt, salt_len);
     395           9 :                 copied_salt[salt_len] = 0;
     396             :         }
     397             : 
     398             :         /* Prepare for the real work.  */
     399          12 :         sha256_init_ctx(&ctx);
     400             : 
     401             :         /* Add the key string.  */
     402          12 :         sha256_process_bytes(key, key_len, &ctx);
     403             : 
     404             :         /* The last part is the salt string.  This must be at most 16
     405             :          characters and it ends at the first `$' character (for
     406             :          compatibility with existing implementations).  */
     407          12 :         sha256_process_bytes(salt, salt_len, &ctx);
     408             : 
     409             : 
     410             :         /* Compute alternate SHA256 sum with input KEY, SALT, and KEY.  The
     411             :          final result will be added to the first context.  */
     412          12 :         sha256_init_ctx(&alt_ctx);
     413             : 
     414             :         /* Add key.  */
     415          12 :         sha256_process_bytes(key, key_len, &alt_ctx);
     416             : 
     417             :         /* Add salt.  */
     418          12 :         sha256_process_bytes(salt, salt_len, &alt_ctx);
     419             : 
     420             :         /* Add key again.  */
     421          12 :         sha256_process_bytes(key, key_len, &alt_ctx);
     422             : 
     423             :         /* Now get result of this (32 bytes) and add it to the other
     424             :          context.  */
     425          12 :         sha256_finish_ctx(&alt_ctx, alt_result);
     426             : 
     427             :         /* Add for any character in the key one byte of the alternate sum.  */
     428          16 :         for (cnt = key_len; cnt > 32; cnt -= 32) {
     429           4 :                 sha256_process_bytes(alt_result, 32, &ctx);
     430             :         }
     431          12 :         sha256_process_bytes(alt_result, cnt, &ctx);
     432             : 
     433             :         /* Take the binary representation of the length of the key and for every
     434             :         1 add the alternate sum, for every 0 the key.  */
     435          57 :         for (cnt = key_len; cnt > 0; cnt >>= 1) {
     436          45 :                 if ((cnt & 1) != 0) {
     437          25 :                         sha256_process_bytes(alt_result, 32, &ctx);
     438             :                 } else {
     439          20 :                         sha256_process_bytes(key, key_len, &ctx);
     440             :                 }
     441             :         }
     442             : 
     443             :         /* Create intermediate result.  */
     444          12 :         sha256_finish_ctx(&ctx, alt_result);
     445             : 
     446             :         /* Start computation of P byte sequence.  */
     447          12 :         sha256_init_ctx(&alt_ctx);
     448             : 
     449             :         /* For every character in the password add the entire password.  */
     450         259 :         for (cnt = 0; cnt < key_len; ++cnt) {
     451         247 :                 sha256_process_bytes(key, key_len, &alt_ctx);
     452             :         }
     453             : 
     454             :         /* Finish the digest.  */
     455          12 :         sha256_finish_ctx(&alt_ctx, temp_result);
     456             : 
     457             :         /* Create byte sequence P.  */
     458          12 :         cp = p_bytes = alloca(key_len);
     459          16 :         for (cnt = key_len; cnt >= 32; cnt -= 32) {
     460           4 :                 cp = __php_mempcpy((void *)cp, (const void *)temp_result, 32);
     461             :         }
     462          12 :         memcpy(cp, temp_result, cnt);
     463             : 
     464             :         /* Start computation of S byte sequence.  */
     465          12 :         sha256_init_ctx(&alt_ctx);
     466             : 
     467             :         /* For every character in the password add the entire password.  */
     468        1804 :         for (cnt = 0; cnt < (size_t) (16 + alt_result[0]); ++cnt) {
     469        1792 :                 sha256_process_bytes(salt, salt_len, &alt_ctx);
     470             :         }
     471             : 
     472             :         /* Finish the digest.  */
     473          12 :         sha256_finish_ctx(&alt_ctx, temp_result);
     474             : 
     475             :         /* Create byte sequence S.  */
     476          12 :         cp = s_bytes = alloca(salt_len);
     477          12 :         for (cnt = salt_len; cnt >= 32; cnt -= 32) {
     478           0 :                 cp = __php_mempcpy(cp, temp_result, 32);
     479             :         }
     480          12 :         memcpy(cp, temp_result, cnt);
     481             : 
     482             :         /* Repeatedly run the collected hash value through SHA256 to burn
     483             :         CPU cycles.  */
     484      253645 :         for (cnt = 0; cnt < rounds; ++cnt) {
     485             :                 /* New context.  */
     486      253633 :                 sha256_init_ctx(&ctx);
     487             : 
     488             :                 /* Add key or last result.  */
     489      253633 :                 if ((cnt & 1) != 0) {
     490      126816 :                         sha256_process_bytes(p_bytes, key_len, &ctx);
     491             :                 } else {
     492      126817 :                         sha256_process_bytes(alt_result, 32, &ctx);
     493             :                 }
     494             : 
     495             :                 /* Add salt for numbers not divisible by 3.  */
     496      253633 :                 if (cnt % 3 != 0) {
     497      169084 :                         sha256_process_bytes(s_bytes, salt_len, &ctx);
     498             :                 }
     499             : 
     500             :                 /* Add key for numbers not divisible by 7.  */
     501      253633 :                 if (cnt % 7 != 0) {
     502      217394 :                         sha256_process_bytes(p_bytes, key_len, &ctx);
     503             :                 }
     504             : 
     505             :                 /* Add key or last result.  */
     506      253633 :                 if ((cnt & 1) != 0) {
     507      126816 :                         sha256_process_bytes(alt_result, 32, &ctx);
     508             :                 } else {
     509      126817 :                         sha256_process_bytes(p_bytes, key_len, &ctx);
     510             :                 }
     511             : 
     512             :                 /* Create intermediate result.  */
     513      253633 :                 sha256_finish_ctx(&ctx, alt_result);
     514             :         }
     515             : 
     516             :         /* Now we can construct the result string.  It consists of three
     517             :         parts.  */
     518          12 :         cp = __php_stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen));
     519          12 :         buflen -= sizeof(sha256_salt_prefix) - 1;
     520             : 
     521          12 :         if (rounds_custom) {
     522             : #ifdef PHP_WIN32
     523             :                 int n = _snprintf(cp, MAX(0, buflen), "%s%u$", sha256_rounds_prefix, rounds);
     524             : #else
     525           7 :                 int n = snprintf(cp, MAX(0, buflen), "%s%zu$", sha256_rounds_prefix, rounds);
     526             : #endif
     527           7 :                 cp += n;
     528           7 :                 buflen -= n;
     529             :         }
     530             : 
     531          12 :         cp = __php_stpncpy(cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
     532          12 :         buflen -= MIN((size_t) MAX (0, buflen), salt_len);
     533             : 
     534          12 :         if (buflen > 0) {
     535          12 :                 *cp++ = '$';
     536          12 :                 --buflen;
     537             :         }
     538             : 
     539             : #define b64_from_24bit(B2, B1, B0, N)                                         \
     540             :   do {                                                                        \
     541             :     unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0);                           \
     542             :     int n = (N);                                                              \
     543             :     while (n-- > 0 && buflen > 0)                                       \
     544             :       {                                                                       \
     545             :         *cp++ = b64t[w & 0x3f];                                                   \
     546             :         --buflen;                                                             \
     547             :         w >>= 6;                                                        \
     548             :       }                                                                       \
     549             :   } while (0)
     550             : 
     551          12 :         b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
     552          12 :         b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
     553          12 :         b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
     554          12 :         b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
     555          12 :         b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
     556          12 :         b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
     557          12 :         b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
     558          12 :         b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
     559          12 :         b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
     560          12 :         b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
     561          12 :         b64_from_24bit(0, alt_result[31], alt_result[30], 3);
     562          12 :         if (buflen <= 0) {
     563           0 :                 errno = ERANGE;
     564           0 :                 buffer = NULL;
     565             :         } else
     566          12 :                 *cp = '\0';             /* Terminate the string.  */
     567             : 
     568             :         /* Clear the buffer for the intermediate result so that people
     569             :      attaching to processes or reading core dumps cannot get any
     570             :      information.  We do it in this way to clear correct_words[]
     571             :      inside the SHA256 implementation as well.  */
     572          12 :         sha256_init_ctx(&ctx);
     573          12 :         sha256_finish_ctx(&ctx, alt_result);
     574          12 :         memset(temp_result, '\0', sizeof(temp_result));
     575          12 :         memset(p_bytes, '\0', key_len);
     576          12 :         memset(s_bytes, '\0', salt_len);
     577          12 :         memset(&ctx, '\0', sizeof(ctx));
     578          12 :         memset(&alt_ctx, '\0', sizeof(alt_ctx));
     579             : 
     580          12 :         if (copied_key != NULL) {
     581           0 :                 memset(copied_key, '\0', key_len);
     582             : 
     583             :         }
     584          12 :         if (copied_salt != NULL) {
     585           9 :                 memset(copied_salt, '\0', salt_len);
     586             :         }
     587             : 
     588          12 :         return buffer;
     589             : }
     590             : 
     591             : 
     592             : /* This entry point is equivalent to the `crypt' function in Unix
     593             :    libcs.  */
     594           0 : char * php_sha256_crypt(const char *key, const char *salt)
     595             : {
     596             :         /* We don't want to have an arbitrary limit in the size of the
     597             :         password.  We can compute an upper bound for the size of the
     598             :         result in advance and so we can prepare the buffer we pass to
     599             :         `sha256_crypt_r'.  */
     600             :         static char *buffer;
     601             :         static int buflen;
     602             :         int needed = (sizeof(sha256_salt_prefix) - 1
     603             :                         + sizeof(sha256_rounds_prefix) + 9 + 1
     604           0 :                         + strlen(salt) + 1 + 43 + 1);
     605             : 
     606           0 :         if (buflen < needed) {
     607           0 :                 char *new_buffer = (char *) realloc(buffer, needed);
     608           0 :                 if (new_buffer == NULL) {
     609           0 :                         return NULL;
     610             :                 }
     611             : 
     612           0 :                 buffer = new_buffer;
     613           0 :                 buflen = needed;
     614             :         }
     615             : 
     616           0 :         return php_sha256_crypt_r(key, salt, buffer, buflen);
     617             : }
     618             : 
     619             : 
     620             : #ifdef TEST
     621             : static const struct
     622             : {
     623             :         const char *input;
     624             :         const char result[32];
     625             : } tests[] =
     626             :         {
     627             :         /* Test vectors from FIPS 180-2: appendix B.1.  */
     628             :         { "abc",
     629             :         "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
     630             :         "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" },
     631             :         /* Test vectors from FIPS 180-2: appendix B.2.  */
     632             :         { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
     633             :         "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
     634             :         "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" },
     635             :         /* Test vectors from the NESSIE project.  */
     636             :         { "",
     637             :         "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
     638             :         "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" },
     639             :         { "a",
     640             :         "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
     641             :         "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" },
     642             :         { "message digest",
     643             :         "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
     644             :         "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" },
     645             :         { "abcdefghijklmnopqrstuvwxyz",
     646             :         "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
     647             :         "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" },
     648             :         { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
     649             :         "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
     650             :         "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" },
     651             :         { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
     652             :         "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
     653             :         "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" },
     654             :         { "123456789012345678901234567890123456789012345678901234567890"
     655             :         "12345678901234567890",
     656             :         "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
     657             :         "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" }
     658             :   };
     659             : #define ntests (sizeof (tests) / sizeof (tests[0]))
     660             : 
     661             : 
     662             : static const struct
     663             : {
     664             :         const char *salt;
     665             :         const char *input;
     666             :         const char *expected;
     667             : } tests2[] =
     668             : {
     669             :         { "$5$saltstring", "Hello world!",
     670             :         "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" },
     671             :         { "$5$rounds=10000$saltstringsaltstring", "Hello world!",
     672             :         "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
     673             :         "opqey6IcA" },
     674             :         { "$5$rounds=5000$toolongsaltstring", "This is just a test",
     675             :         "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
     676             :         "mGRcvxa5" },
     677             :         { "$5$rounds=1400$anotherlongsaltstring",
     678             :         "a very much longer text to encrypt.  This one even stretches over more"
     679             :         "than one line.",
     680             :         "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
     681             :         "oP84Bnq1" },
     682             :         { "$5$rounds=77777$short",
     683             :         "we have a short salt string but not a short password",
     684             :         "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" },
     685             :         { "$5$rounds=123456$asaltof16chars..", "a short string",
     686             :         "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
     687             :         "cZKmF/wJvD" },
     688             :         { "$5$rounds=10$roundstoolow", "the minimum number is still observed",
     689             :         "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
     690             :         "2bIC" },
     691             : };
     692             : #define ntests2 (sizeof (tests2) / sizeof (tests2[0]))
     693             : 
     694             : 
     695             : int main(void) {
     696             :         struct sha256_ctx ctx;
     697             :         char sum[32];
     698             :         int result = 0;
     699             :         int cnt, i;
     700             :         char buf[1000];
     701             :         static const char expected[32] =
     702             :         "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
     703             :         "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";
     704             : 
     705             :         for (cnt = 0; cnt < (int) ntests; ++cnt) {
     706             :                 sha256_init_ctx(&ctx);
     707             :                 sha256_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx);
     708             :                 sha256_finish_ctx(&ctx, sum);
     709             :                 if (memcmp(tests[cnt].result, sum, 32) != 0) {
     710             :                         printf("test %d run %d failed\n", cnt, 1);
     711             :                         result = 1;
     712             :                 }
     713             : 
     714             :                 sha256_init_ctx(&ctx);
     715             :                 for (i = 0; tests[cnt].input[i] != '\0'; ++i) {
     716             :                         sha256_process_bytes(&tests[cnt].input[i], 1, &ctx);
     717             :                 }
     718             :                 sha256_finish_ctx(&ctx, sum);
     719             :                 if (memcmp(tests[cnt].result, sum, 32) != 0) {
     720             :                         printf("test %d run %d failed\n", cnt, 2);
     721             :                         result = 1;
     722             :                 }
     723             :         }
     724             : 
     725             :         /* Test vector from FIPS 180-2: appendix B.3.  */
     726             : 
     727             :         memset(buf, 'a', sizeof(buf));
     728             :         sha256_init_ctx(&ctx);
     729             :         for (i = 0; i < 1000; ++i) {
     730             :                 sha256_process_bytes (buf, sizeof (buf), &ctx);
     731             :         }
     732             : 
     733             :         sha256_finish_ctx(&ctx, sum);
     734             : 
     735             :         if (memcmp(expected, sum, 32) != 0) {
     736             :                 printf("test %d failed\n", cnt);
     737             :                 result = 1;
     738             :         }
     739             : 
     740             :         for (cnt = 0; cnt < ntests2; ++cnt) {
     741             :                 char *cp = php_sha256_crypt(tests2[cnt].input, tests2[cnt].salt);
     742             :                 if (strcmp(cp, tests2[cnt].expected) != 0) {
     743             :                         printf("test %d: expected \"%s\", got \"%s\"\n", cnt, tests2[cnt].expected, cp);
     744             :                         result = 1;
     745             :                 }
     746             :         }
     747             : 
     748             :         if (result == 0)
     749             :         puts("all tests OK");
     750             : 
     751             :         return result;
     752             : }
     753             : #endif

Generated by: LCOV version 1.10

Generated at Wed, 16 Apr 2014 12:47:58 +0000 (12 hours ago)

Copyright © 2005-2014 The PHP Group
All rights reserved.